

PCBA Modal Analysis using FEA

Reliability Engineering Group Cascade Engineering Services, Inc. 6640 185th Ave NE Redmond WA 98052 (425) 895-8617 x 564

www.cascade-eng.com

PCBA Modal Analysis

Introduction

- Vibration Modes are inherent properties of a structure, and are determined by the material properties (mass, damping, and stiffness), and boundary conditions of the structure.
- Each mode is defined by a natural (modal or resonant) frequency, modal damping and a mode shape
- Test Case: Modal Analysis of PCBA Assembly with 4 constraint locations to study the inherent property of this structure

Note: Modal Analysis can be considered as a virtual qualification study for Sine sweep tests and random vibration tests.

FEA Procedure Outline

Test Objective

• To determine fundamental modal frequencies of an electronic PCBA using FEA

Methodology

- Step 1: Geometry and Material Properties
- Step 2: Loads and Boundary Conditions
- Step 3: FEA Model
- Step 4: Sample Results
- Case Study Benefits

Step 1: Geometric Model & Material Properties

Unit System	U.S. Customary (in, lbm, lbf, °F, s, V, A)		
Angle	Degrees		
Rotational			
Velocity	rad/s		

CAD MODEL: PCBA-Fixture setup with standoffs

Matarial	Young's Modulus	Poisson's	Density	Tensile Strength
iviaterial	psi	Ratio	lb/in^3	psi
FR4	2.81E+06	0.35	6.50E-02	38000
Stainless Steel	2.80E+07	0.31	2.80E-01	30023
ABS	3.39E+05	0.3	3.78E-02	5800

Material Properties

Step 2: Loads & Boundary Conditions

Modal Analysis helps determine the fundamental frequency modes

Step 3: FEA Model

Ξ	Defaults				
	Physics Preference	Mechanical			
	Relevance	0			
	Advanced				
	Relevance Center	Coarse			
	Element Size	Default			
	Shape Checking	Standard Mechanical			
	Solid Element Midside Nodes	Program Controlled			
	Straight Sided Elements	No			
	Initial Size Seed	Active Assembly			
	Smoothing	Low			
-	Transition	Fast			
	Statistics				
	Nodes	82755			
1000	Elements	37650			

Element Type Used

<u>SOLID187</u>

3-D 10-Node Tetrahedral Structural Solid

10 nodes 3-D space

DOF: UX, UY, UZ

SOLID186

3-D 20-Node Structural Solid or Layered Solid

DOF: UX, UY, UZ

20 nodes 3-D space

Step 4: Modal Analysis Results

1st Mode Shape - Frequency: 305 Hz

2nd Mode Shape - Frequency: 585 Hz

3rd Mode Shape - Frequency: 850 Hz

Mode #	PCBA only	PCBA with Fixture
1	296 Hz	305 Hz
2	570 Hz	585 Hz
3	819 Hz	850 Hz
4	1048 Hz	1084 Hz
5	1269 Hz	1304 Hz
6	1397 Hz	1429 Hz

<u>Outputs</u>

- Mode Shapes-displacements
- Critical locations for sensor mounting-accelerometer and strain gages

Case Study Benefits

- Quick and easy analysis for understanding product behavior
- Provides insights for sensor placement and valuable transmissibility information
- Useful and necessary for vibration damage quantification